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NBPSeq-package Negative Binomial Regression Models for Statistical Analysis of RNA-
Sequencing Data

Description

Negative binomial (NB) two-group and regression models for RNA-Sequencing data analysis.

Details

See the examples of test.coefficient and exact.nb.test for typical workflows of using this
package.

arab Arabidopsis RNA-Seq Data Set

Description

An RNA-Seq dataset from a pilot study of the defense response of Arabidopsis to infection by
bacteria. We performed RNA-Seq experiments on three independent biological samples from each
of the two treatment groups. The matrix contains the frequencies of RNA-Seq reads mapped to
genes in a reference database. Rows correspond to genes and columns correspond to independent
biological samples.

Usage

data(arab)

Format

A 26222 by 6 matrix of RNA-Seq read frequencies.
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Details

We challenged leaves of Arabidopsis with the defense-eliciting ∆hrcC mutant of Pseudomonas
syringae pathovar tomato DC3000. We also infiltrated leaves of Arabidopsis with 10mM MgCl2
as a mock inoculation. RNA was isolated 7 hours after inoculation, enriched for mRNA and pre-
pared for RNA-Seq. We sequenced one replicate per channel on the Illumina Genome Analyzer
(http://www.illumina.com). The length of the RNA-Seq reads can vary in length depending on
user preference and the sequencing instrument. The dataset used here are derived from a 36-cycle
sequencing reaction, that we trimmed to 25mers. We used an in-house computational pipeline to
process, align, and assign RNA-Seq reads to genes according to a reference database we developed
for Arabidopsis.

Author(s)

Jason S Cumbie <cumbiej@onid.orst.edu> and Jeff H Chang <changj@cgrb.oregonstate.edu>.

References

Di Y, Schafer DW, Cumbie JS, and Chang JH (2011): "The NBP Negative Binomial Model for
Assessing Differential Gene Expression from RNA-Seq", Statistical Applications in Genetics and
Molecular Biology, 10 (1).

compute.tail.prob (private) Compute the tail probability of a conditional distribution in-
volving a pair of Negative Binomial (NB) random variables given their
sum

Description

Compute the probability of observing values of (S1, S2) that are more extreme than (s1, s2) given
that S1+S2=s1+s2 for a pair of Negative Binomial (NB) random variables (S1, S2) with mean and
size parameters (mu1, kappa1) and (mu2, kappa2) respectively.

Usage

compute.tail.prob(s1, s2, mu1, mu2, kappa1, kappa2)

Arguments

s1 a number, the observed value of a NB random variable

s2 a number, the observed value of a NB random variable

mu1 a number, the mean parameter of the NB variable s1

mu2 a number, the mean parameter of the NB variable s2

kappa1 a number, the size parameter of the NB variable s1

kappa2 a number, the size parameter of the NB variable s2
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Details

This function computes the probabily of (S1, S2) for all values of S1 and S2 such that S1+S2=s1+s2,
then sums over the probabilites that are less than or equal to that of the observed values (s1, s2). In
context of DE test using RNA-Seq data after thinning, S1 and S2 are often sums of iid NB random
variables (and are thus NB random variables too).

The current implementation can be slow if s1 + s2 is large.

Potential improvements: For computing the one-sided tail probability of Pr(S1<s1 |S1+S2=s1+s2),
there might be a faster way. The conditional distribution can be also approximated by saddlepoint
methods. If S1 and S2 are sum of two subsets of iid random variables, the saddle point approxima-
tion would be very accurate.

Value

a number giving the probability of observing a (S1, S2) that is as or more extreme than (s1, s2)
given that S1+S2=s1+s2.

disp.by.group Specify a dispersion model where the parameters of the model will be
estimated separately for different groups

Description

Specify a dispersion model where the parameters of the model will be estimated separately for
different groups

Usage

disp.by.group(disp.fun, grp.ids, predictor, subset,
predictor.label = "Predictor", ...)

Arguments

disp.fun

grp.ids

predictor

subset
predictor.label

...

Value

a list,
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disp.nbp (private) Specify a NBP dispersion model

Description

Specify a NBP dispersion model. The parameters of the specified model are to be estimated from
the data using the function optim.disp.apl or optim.disp.pl.

Usage

disp.nbp(counts, eff.lib.sizes, x, phi.pre = 0.1, mu.lower = 1,
mu.upper = Inf)

Arguments

counts an m× n matrix of NB counts

eff.lib.sizes a n-vector of estimated effective library sizes

x a nxp matrix, design matrix (specifying the treatment structure)

phi.pre a number, a preliminary constant dispersion value, will be used to get prelimi-
nary estimates of mean counts (mu.pre).

mu.lower a number, rows with any component of mu.pre < mu.lower will not be used for
estimating the dispersion model

mu.upper a number, rows with any component of mu.pre > mu.upper will not be used for
estimating the dispersion model

Details

Under this NBP model, the log dispersion is modeled as a linear function of the preliminary esti-
mates of the log mean realtive frequencies (pi.pre):

log(phi) = par[1] + par[2] * log(pi.pre/pi.offset),

where pi.offset is 1e-4.

Under this parameterization, par[1] is the dispersion value when the estimated relative frequency is
1e-4 (or 100 RPM).

Value

a list

fun a function that takes a vector, par, as input and outputs a matrix of dispersion
values (same dimension as counts)

par.init a numeric vector of length 2, initial values of par

lower a numeric vector of length 2, lower bounds of the parameter values

upper a numeric vector of length 2, upper bounds of the parameter values
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subset a logical vector of length m, specifying the subset of rows to be used when
estimating the dispersion model parameters.

pi.pre a m by n matrix, preliminary estimates of the relative frequencies.

pi.offset a scalar, fixed to be 1e-4, an offset used in the NBP model (see Details)

disp.nbq (private) Specify a NBQ dispersion model

Description

Specify a NBQ dispersion model. The unknown parameters in the specified model are to be esti-
mated using the function optim.disp.pl or optim.disp.apl.

Usage

disp.nbq(counts, eff.lib.sizes, x, phi.pre = 0.1, mu.lower = 1,
mu.upper = Inf, pi.offset = median(pi.pre[subset, ]))

Arguments

counts a mxn matrix of NB counts

eff.lib.sizes a n-vector of estimated effective library sizes

x a nxp matrix, design matrix (specifying the treatment structure)

phi.pre a number, a preliminary constant dispersion value

mu.lower a number, rows with mu.pre < mu.lower will not be used for estimating the
dispersion model

mu.upper a number, rows with mu.pre > mu.upper will not be used for estimating the
dispersion model

pi.offset a scalar, an offset used in the NBQ model (see Details).

Details

Under this NBQ model, the dispersion is modeled as a quadratic function of the preliminary esti-
mates of the log mean realtive frequencies (pi.pre):

log(phi) = par[1] + par[2] * z + par[3] * z^2,

where z = log(pi.pre/pi.offset). By default, pi.offset is the median of pi.pre[subset,].

Value

a list

fun a function that takes a vector, par, as input and outputs a matrix of dispersion
values (same dimension as counts)

par.init a vector of length 3, initial values of par
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lower a vector of length 3, lower bounds of the parameter values
upper a vector of length 3, upper bounds of the parameter values
subset a logical vector of length m, specifying the subset of rows to be used when

estimating the dispersion model parameters.
pi.pre a m by n matrix, preliminary estimates of the relative frequencies.
pi.pre a m by n matrix, preliminary estimates of the relative frequencies.
pi.offset a scalar used as an offset in the NBQ model (see Details)

disp.nbs (private) Specify a NBS dispersion model

Description

Specify a NBS dispersion model. The specified model are to be estimated using the function
optim.disp.pl or optim.disp.apl. Under this NBS model, the dispersion is modeled as a smooth
function (a natural cubic spline function) of the preliminary estimates of the log mean realtive fre-
quencies (pi.pre).

Usage

disp.nbs(counts, eff.lib.sizes, x, df = 6, phi.pre = 0.1, mu.lower = 1,
mu.upper = Inf)

Arguments

counts a mxn matrix of NB counts
eff.lib.sizes a n-vector of estimated effective library sizes
x a nxp matrix, design matrix (specifying the treatment structure)
df the number of interior nodes
phi.pre a number, a preliminary constant dispersion value
mu.lower a number, rows with mu.pre < mu.lower will not be used for estimating the

dispersion model
mu.upper a number, rows with mu.pre > mu.upper will not be used for estimating the

dispersion model

Details

disp.nbs calls the function ns to generate a set of spline bases, using log(pi.pre) (converted to a
vector) as the predictor variable. Linear combinations of these spline bases are smooth functions
of log(pi.pre). The return value includes a function, fun, to be optimized by optim.disp.pl or
optim.disp.apl. The parameter of that function is a vector of linear combination coefficients of
the spline bases.

df+2 nodes are used when constructing the splint bases. The Boundary.nodes are placed at the min
and max values of log(pi.pre). Two nodes are placed at the 0.05 and 0.95th quantiles of log(pi.pre)
and an additional df-2 inner nodes are equally spaced between the two nodes.

It is a challenging issue to determine the optimal number and placement of the nodes.
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Value

a list

fun a function that takes a vector, par, as input and outputs a matrix (same dimen-
sion as counts) of dispersion values. par will be used as linear-combination
efficients for the spline bases, the estimated dispersion values are a spline func-
tion of log(pi.pre).

par.init initial values of par

subset a logical vector of length m, specifying the subset of genes to be used when
estimating the model parameters. Note that the estimated model will be applied
to all rows whenever possible, but only rows specified in subset will be used to
estimate the parameters of the dispersion model.

pi.pre a m by n matrix, preliminary estimates of the relative frequencies.

s Basis matrix of the natural cubic spline evalued at the z = log(pi.pre)

disp.predictor.mu Dispersion precitor

Description

Dispersion precitor

Usage

disp.predictor.mu(nb.data, x, phi.pre = 0.1, mu.lower = 1, mu.upper = Inf)

Arguments

nb.data

x

phi.pre

mu.lower

mu.upper

Value

a logical vector
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disp.step (private) Specify a piecewise constant dispersion model

Description

Specify a piecewise constant (step) dispersion model. The specified model are to be estimated using
the function optim.disp.pl or optim.disp.apl.

Usage

disp.step(counts, eff.lib.sizes, x, df = 1, knots = NULL, phi.pre = 0.1,
mu.lower = 1, mu.upper = Inf)

Arguments

counts a mxn matrix of NB counts

eff.lib.sizes a n-vector of estimated effective library sizes

x a nxp matrix, design matrix (specifying the treatment structure)

df the number of steps

knots a numerical vector of length df-1, giving the knots or jump locations.

phi.pre a number, a preliminary constant dispersion value

mu.lower a number, rows with mu.pre < mu.lower will not be used for estimating the
dispersion model

mu.upper a number, rows with mu.pre > mu.upper will not be used for estimating the
dispersion model

Details

Under this model, the dispersion is modeled as a step (piecewise constant) function.

Value

a list

fun a function that takes par as input and outputs a matrix (same dimension as
counts) of dispersion values

par.init a vector of length df, initial values of par

subset a logical vector of length m, specifying a subset of genes to be used when esti-
mating the model parameters. Note that the estimated model will be applied to
all rows whenever possible, but only rows specified in subset will be used to
estimate the dispersion model parameters.

pi.pre a m by n matrix, preliminary estimates of the relative frequencies.

knots a vector, the break points of the step function
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Dispersion Models (private) Specify a NB2, NBP, NBS, NBS, or STEP dispersion model

Description

(private) Specify a NB2, NBP, NBS, NBS, or STEP dispersion model

Usage

disp.fun.nb2(predictor, subset, offset = NULL,
predictor.label = "Predictor", par.init = -1)

disp.fun.nbp(predictor, subset, offset = median(predictor[subset, ]),
predictor.label = "Predictor", par.init = c(log(0.1), 0),
par.lower = c(log(1e-20), -1.1), par.upper = c(0, 0.1))

disp.fun.nbq(predictor, subset, offset = median(predictor[subset, ]),
predictor.label = "Predictor", par.init = c(log(0.1), 0, 0),
par.lower = c(log(1e-20), -1, -0.2), par.upper = c(0, 1, 0.2))

disp.fun.nbs(predictor, subset, offset = NULL,
predictor.label = "Predictor", df = 6, par.init = rep(-1, df))

disp.fun.step(predictor, subset, offset = NULL,
predictor.label = "Predictor", df = 6, knots = NULL,
par.init = rep(-1, df))

Arguments

predictor a m-by-n matrix having the same dimensions as the NB counts, predictor of the
dispersion. See Details.

subset a logical vector of length m, specifying the subset of rows to be used when
estimating the dispersion model parameters.

offset a scalar offset.
predictor.label

a string describing the predictor

par.init a numeric vector, initial values of par.

label a string character describing the predictor.

par.lower a numeric vector, lower bounds of the parameter values.

par.upper a numeric vector, upper bounds of the parameter values.
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Details

Specify a NBP dispersion model. The parameters of the specified model are to be estimated from
the data using the function optim.disp.apl or optim.disp.pl.

Under the NBP model, the log dispersion is modeled as a linear function of specified predictor with
a scalar offset,

log(phi) = par[1] + par[2] * log(predictor/offset).

Under this parameterization, par[1] is the dispersion value when the value of predictor equals
the offset. This function will return a function (and related settings) to be estimated by either
optim.disp.apl or optim.disp.pl. The logical vector subset specifieds which rows will be
used when estimating the paramters (par) of the dispersion model.

Once estimated, the dispersion function will be applied to all values of the predictor matrix. Care
needs to be taken to either avoid NA/Inf values when preparing the predictor matrix or handle
NA/Inf values afterwards (e.g., when performing hypothesis tests).

Value

a list

fun a function that takes a vector, par, as input and outputs a matrix of dispersion
values (same dimension as counts)

par.init, par.lower, par.upper
same as input

subset same as input
predictor, offset, predictor.lable

same as input

estimate.disp Fit a parametric disperison model to thinned counts

Description

Fit a parametric dispersion model to RNA-Seq counts data prepared by prepare.nbp. The model
parameters are estimated from the pseudo counts: thinned/down-sampled counts that have the same
effective library size.

Usage

estimate.disp(obj, model = "NBQ", print.level = 1, ...)

Arguments

obj output from prepare.nbp.
model a string, one of "NBQ" (default), "NBP" or "NB2".
print.level a number, controls the amount of messages printed: 0 for suppressing all mes-

sages, 1 for basic progress messages, larger values for more detailed messages.
... additional parameters controlling the estimation of the parameters.
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Details

For each individual gene i, a negative binomial (NB) distribution uses a dispersion parameter ϕi to
capture the extra-Poisson variation between biological replicates: the NB model imposes a mean-
variance relationship σ2

i = µi + ϕiµ
2
i . In many RNA-Seq data sets, the dispersion parameter ϕi

tends to vary with the mean µi. We proposed to capture the dispersion-mean dependence using
parametric models.

With this function, estimate.disp, users can choose from three parametric models: NB2, NBP
and NBQ (default).

Under the NB2 model, the dispersion parameter is a constant and does not vary with the mean
expression levels.

Under the NBP model, the log dispersion is modeled as a linear function of preliminarily estimated
log mean relative frequencies (pi.pre):

log(phi) = par[1] + par[2] * log(pi.pre/pi.offset),

Under the NBQ model, the log dispersion is modeled as a quadratic function of preliminarily esti-
mated log mean relative frequencies (pi.pre):

log(phi) = par[1] + par[2] * log(pi.pre/pi.offset) + par[3] * (log(pi.pre/pi.offset))^2;

The NBQ model is more flexible than the NBP and NB2 models, and is the current default option.

In the NBP and NBQ models, pi.offset is fixed to be 1e-4, so par[1] corresponds to the dispersion
level when the relative mean frequency is 100 reads per million (RPM).

The dispersion parameters are estimated from the pseudo counts (counts adjusted to have the same
effective library sizes). The parameters are estimated by maximizing the log conditional likelihood
of the model parameters given the row sums. The log conditional likelihood is computed for each
gene in each treatment group and then summed over genes and treatment groups.

Value

The list obj from the input with some added components summarizing the fitted dispersion model.
Users can print and plot the output to see brief summaries of the fitted dispersion model. The output
is otherwise not intended for use by end users directly.

Note

Users should call prepare.nbp before calling this function. The function prepare.nbp will nor-
malize the counts and adjust the counts so that the effective library sizes are approximately the same
(computing the conditional likelihood requires the library sizes to be the same).

References

Di Y, Schafer DW, Cumbie JS, and Chang JH (2011): "The NBP Negative Binomial Model for
Assessing Differential Gene Expression from RNA-Seq", Statistical Applications in Genetics and
Molecular Biology, 10 (1).

See Also

nbp.test, exact.nb.test
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Examples

## See the example for nb.exact.test

estimate.dispersion Estimate Negative Binomial Dispersion

Description

Estimate NB dispersion by modeling it as a parametric function of preliminarily estimated log mean
relative frequencies.

Usage

estimate.dispersion(nb.data, x, model = "NBQ", predictor = "pi",
method = "MAPL", fast = TRUE, ...)

Arguments

nb.data output from prepare.nb.data.

x a design matrix specifying the mean structure of each row.

model the name of the dispersion model, one of "NB2", "NBP", "NBQ" (default),
"NBS" or "step".

predictor

method a character string specifying the method for estimating the dispersion model,
one of "ML" or "MAPL" (default).

fast use a faster (but might be less accurate method)

... additional parameters to optim.fun.<method>

Details

We use a negative binomial (NB) distribution to model the read frequency of gene i in sample j.
A negative binomial (NB) distribution uses a dispersion parameter ϕij to model the extra-Poisson
variation between biological replicates. Under the NB model, the mean-variance relationship of a
single read count satisfies σ2

ij = µij + ϕijµ
2
ij . Due to the typically small sample sizes of RNA-Seq

experiments, estimating the NB dispersion ϕij for each gene i separately is not reliable. One can
pool information across genes and biological samples by modeling ϕij as a function of the mean
frequencies and library sizes.

Under the NB2 model, the dispersion is a constant across all genes and samples.

Under the NBP model, the log dispersion is modeled as a linear function of the preliminary estimates
of the log mean relative frequencies (pi.pre):

log(phi) = par[1] + par[2] * log(pi.pre/pi.offset),

where pi.offset is 1e-4.

Under the NBQ model, the dispersion is modeled as a quadratic function of the preliminary esti-
mates of the log mean relative frequencies (pi.pre):
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log(phi) = par[1] + par[2] * z + par[3] * z^2,

where z = log(pi.pre/pi.offset). By default, pi.offset is the median of pi.pre[subset,].

Under this NBS model, the dispersion is modeled as a smooth function (a natural cubic spline
function) of the preliminary estimates of the log mean relative frequencies (pi.pre).

Under the "step" model, the dispersion is modeled as a step (piecewise constant) function.

Value

a list with following components:

estimates dispersion estimates for each read count, a matrix of the same dimensions as the
counts matrix in nb.data.

likelihood the likelihood of the fitted model.

model details of the estimate dispersion model, NOT intended for use by end users. The
name and contents of this component are subject to change in future versions.

Note

Currently, it is unclear whether a dispersion-modeling approach will outperform a more basic ap-
proach where regression model is fitted to each gene separately without considering the dispersion-
mean dependence. Clarifying the power-robustness of the dispersion-modeling approach is an on-
going research topic.

Examples

## See the example for test.coefficient.

estimate.norm.factors Estiamte Normalization Factors

Description

estimate.norm.factors estiamtes normalization factors to account for apparent reduction or in-
crease in relative frequencies of non-differentially expressing genes as a result of compensating the
increased or decreased relative frequencies of truly differentially expressing genes.

Usage

estimate.norm.factors(counts, lib.sizes = colSums(counts),
method = "AH2010")
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Arguments

counts a matrix of RNA-Seq read counts with rows corresponding to gene features and
columns corresponding to independent biological samples.

lib.sizes a vector of observed library sizes, usually and by default estimated by column
totals.

method a character string specifying the method for normalization, currenlty, can be
NULL or "AH2010". If method=NULL, the normalization factors will have
values of 1 (i.e., no normalization is applied); if method="AH2010" (default),
the normalization method proposed by Anders and Huber (2010) will be used.

Details

We take gene expression to be indicated by relative frequency of RNA-Seq reads mapped to a gene,
relative to library sizes (column sums of the count matrix). Since the relative frequencies sum to
1 in each library (one column of the count matrix), the increased relative frequencies of truly over
expressed genes in each column must be accompanied by decreased relative frequencies of other
genes, even when those others do not truly differentially express. If not accounted for, this may
give a false impression of biological relevance (see, e.g., Robinson and Oshlack (2010), for some
examples.) A simple fix is to compute the relative frequencies relative to effective library sizes—
library sizes multiplied by normalization factors.

Value

a vector of normalization factors.

References

Anders, S. and W. Huber (2010): "Differential expression analysis for sequence count data," Genome
Biol., 11, R106.

Robinson, M. D. and A. Oshlack (2010): "A scaling normalization method for differential expres-
sion analysis of RNA-seq data," Genome Biol., 11, R25.

Examples

## Load Arabidopsis data
data(arab)

## Estimate normalization factors using the method of Anders and Huber (2010)
norm.factors = estimate.norm.factors(arab);
print(norm.factors);
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exact.nb.test Exact Negative Binomial Test for Differential Gene Expression

Description

exact.nb.test performs the Robinson and Smyth exact negative binomial (NB) test for differential
gene expression on each gene and summarizes the results using p-values and q-values (FDR).

Usage

exact.nb.test(obj, grp1, grp2, print.level = 1)

Arguments

obj output from estimate.disp.

grp1 Identifier of group 1. A number, character or string (should match at least one
of the obj$grp.ids).

grp2 Identifier of group 2. A number, character or string (should match at least one
of the obj$grp.ids).

print.level a number. Controls the amount of messages printed: 0 for suppressing all mes-
sages, 1 for basic progress messages, larger values for more detailed messages.

Details

The negative binomial (NB) distribution offers a more realistic model for RNA-Seq count variability
and still permits an exact (non-asymptotic) test for comparing expression levels in two groups.

For each gene, let S1, S2 be the sums of gene counts from all biological replicates in each group.
The exact NB test is based on the conditional distribution of S1|S1+S2: a value of S1 that is too big
or too small, relative to the sum S1 +S2, indicates evidence for differential gene expression. When
the effective library sizes are the same in all replicates and the dispersion parameters are known,
we can determine the probability functions of S1, S2 explicitly. The exact p-value is computed as
the total conditional probability of all possible values of (S1, S2) that have the same sum as but are
more extreme than the observed values of (S1, S2).

Note that we assume that the NB dispersion parameters for the two groups are the same and library
sizes (column totals of the count matrix) are the same.

Value

the list obj from the input with the following added components:

grp1 same as input.

grp2 same as input.

pooled.pie estimated pooled mean of relative count frequencies in the two groups being
compared.
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expression.levels

a matrix of estimated gene expression levels as indicated by mean relative read
frequencies. It has three columns grp1, grp2, pooled corresponding to the two
treatment groups and the pooled mean.

log.fc base 2 log fold change in mean relative frequency between two groups.

p.values p-values of the exact NB test applied to each gene (row).

q.values q-values (estimated FDR) corresponding to the p-values.

Note

Before calling exact.nb.test, the user should call estimate.norm.factors to estimate normal-
ization factors, call prepare.nbp to adjust library sizes, and call estimate.disp to fit a dispersion
model. The exact NB test will be performed using pseudo.counts in the list obj, which are nor-
malized and adjusted to have the same effective library sizes (column sums of the count matrix,
multiplied by normalization factors).

Users not interested in fine tuning the underlying statistical model should use nbp.test instead.
The all-in-one function nbp.test uses sensible approaches to normalize the counts, estimate the
NBP model parameters and test for differential gene expression.

A test will be performed on a row (a gene) only when the total row count is nonzero, otherwise an
NA value will be assigned to the corresponding p-value and q-value.

See Also

nbp.test.

Examples

## Load Arabidopsis data
data(arab);

## Specify treatment groups
## grp.ids = c(1, 1, 1, 2, 2, 2); # Numbers or strings are both OK
grp.ids = rep(c("mock", "hrcc"), each=3);

## Estimate normalization factors
norm.factors = estimate.norm.factors(arab);
print(norm.factors);

## Prepare an NBP object, adjust the library sizes by thinning the
## counts. For demonstration purpose, only use the first 100 rows of
## the arab data.
set.seed(999);
obj = prepare.nbp(arab[1:100,], grp.ids, lib.size=colSums(arab), norm.factors=norm.factors);
print(obj);

## Fit a dispersion model (NBQ by default)
obj = estimate.disp(obj);
plot(obj);

## Perform exact NB test
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## grp1 = 1;
## grp2 = 2;
grp1 = "mock";
grp2 = "hrcc";

obj = exact.nb.test(obj, grp1, grp2);

## Print and plot results
print(obj);
par(mfrow=c(3,2));
plot(obj);

filter.mu.pre Create a logical vector specifyfing the subset of rows to be used when
estimating the dispersion model

Description

Create a logical vector specifyfing the subset of rows to be used when estimating the dispersion
model

Usage

filter.mu.pre(nb.data, x, mu.lower = 1, mu.upper = Inf, phi.pre = 0.1)

Arguments

nb

x

mu.lower

mu.upper

Value

a logical vector specifyfing the subset of rows to be used when estimating the dispersion model
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fit.nb.glm.1 Fit a single negative binomial (NB) log-linear regression model with
known dispersion paramreters

Description

Fit a NB log-linear regression model: find the MLE of the regression coefficients and compute
likelihood of the fitted model, the score vector, and the Fisher and observed information.

Usage

fit.nb.glm.1(y, s, x, phi, beta0 = rep(NA, dim(x)[2]), ...)

Arguments

y an n-vector of NB counts.

s an n-vector of library sizes (multiplicative offset).

x an n by p design matrix.

phi a scalar or an n-vector, the NB dipsersion parameter.

beta0 a p-vector specifying the known and unknown components of beta, the regres-
sion coefficients. NA values indicate unknown components and non-NA values
specify the values of the known components. The default is that all components
of beta are unknown.

... furhter arguements to be passed to irls.nb.1.

Details

Under the NB regression model, the components of y follow a NB distribution with means mu = s
exp(x’ beta) and dispersion parameters phi.

The function will call irls.nb.1 to find MLE of the regression coefficients (which uses the itera-
tively reweighted least squres (ILRS) algorithm).

Value

a list

mu an n-vector, estimated means (MLE).

beta an p-vector, estimated regression coefficients (MLE).

iter number of iterations performed in the IRLS algorithm.

zero logical, whether any of the estimated mu is close to zero.

l log likelihood of the fitted model.

D a p-vector, the score vector

i a p-by-p matrix, fisher information matrix

j a p-by-p matrix, observed information matrix
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Note

The information matries, i and j, will be computed for all all components of beta—including known
components.

fit.nb.glm.1u Fit a single negative binomial (NB) log-linear regression model with a
common unknown dispersion paramreter

Description

Fit a single negative binomial (NB) log-linear regression model with a common unknown dispersion
paramreter.

Usage

fit.nb.glm.1u(y, s, x, phi = NA, beta0 = rep(NA, dim(x)[2]),
kappa = 1/phi, info.kappa = TRUE, ...)

Arguments

y a n-vector of NB counts.

s a n-vector of library sizes.

x a n by p design matrix.

phi a scalar, the NB dipsersion parameter.

beta0 a p-vector specifying the known and unknown components of beta, the regres-
sion coefficients. NA values indicate unknown components and non-NA values
specify the values of the known components. The default is that all components
of beta are unknown.

kappa a scalar, the size/shape parameter. kappa will be set to 1/phi if phi is not NA
and will be estiamted if both phi and kappa are NA.

info.kappa

... additional parameters to irls.nb.1

Details

Find the MLE of the dipsersion parameter and the regression coefficients in a NB regression model.

Under the NB regression model, the components of y follow a NB distribution with means mu = s
exp(x’ beta) and a common dispersion parameter phi.
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Value

a list

mu an n-vector, estimated means (MLE).

beta an p-vector, estimated regression coefficients (MLE).

iter number of iterations performed in the IRLS algorithm.

zero logical, whether any of the estimated mu is close to zero.

kappa a scalar, the size parameter

phi a scalr, 1/kappa, the dispsersion parameter

l log likelihood of the fitted model.

D a p-vector, the score vector

j a p-by-p matrix, observed information matrix

Note

When the disperison is known, the user should specify only one of phi or kappa. Whenever phi is
specified (non-NA), kappa will be set to 1/phi.

The observed information matrix, j, will be computed for all parameters—kappa and all components
of beta (including known components). It will be computed at the estimated values of (phi, beta) or
(kappa, beta), which can be unconstrained or constrained MLEs depending on how the arguments
phi (or kappa) and beta are specified.

TODO: allow computing the information matrix using phi or log(kappa) as parameter

get.mean.hat (private) Extract row means of the pseudo counts for the specified
group from an nbp object.

Description

(private) Extract row means of the pseudo counts for the specified group from an nbp object.

Usage

get.mean.hat(obj, grp.id)

Arguments

obj a list with class nbp, output prepare.nbp, estimate.disp, exact.nb.test or
nbp.test

grp.id a number or a charater (same type as obj$grp.ids), group id
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get.nbp.pars (private) Retrieve nbp parameters for one of the treatment groups from
an nbp object

Description

(private) Retrieve nbp parameters for one of the treatment groups from an nbp object

Usage

get.nbp.pars(obj, grp.id)

Arguments

obj output form nbp.mcle

grp.id the id of a treatment grp

Value

a list

n number of genes

r number of replicates

lib.sizes library sizes

pie estimated mean relatiev frequenices

phi, alpha dispersion model parameters

get.rel.mean (private) Extract row relative means of the pseudo counts for the spec-
ified group from an nbp object.

Description

(private) Extract row relative means of the pseudo counts for the specified group from an nbp object.

Usage

get.rel.mean(obj, grp.id)

Arguments

obj a list with class nbp, output prepare.nbp, estimate.disp, exact.nb.test or
nbp.test

grp.id a number or a charater (same type as obj$grp.ids), group id
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get.var.hat (private) Extract estimated variance from the oupput of nbp-mcle or
nbp-test

Description

(private) Extract estimated variance from the oupput of nbp-mcle or nbp-test

Usage

get.var.hat(obj, grp.id)

Arguments

obj a list, output from nbp-mcle or nbp-test

grp.id a number, group id

hist2d 2-d Histogram

Description

Commpute a 2-d histogram of the given data values. (not implemented yet: If plot == TRUE, plot
the resulting histogram.)

Usage

hist2d(x, y, xlim = range(x), ylim = range(y), nbins)

Arguments

x a vector

y a vector of the same length as x

xlim a vector of length 2, the range of x values

ylim a vector of length 2, the range of y values

nbins a single number giving the number of bins (the same for both x- and y- axes).

Details

This funciton divides the xlim x ylim region into nbins x nbins equal-sized cells and count the
number of (x,y) points in each cell.
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Value

a list

x a vector of length nbins, the midpoints of each bin on the x-axis.

y a vector of length nbins, the midpoints of each bin on the y-axis.

z a nbins by nbins matrix of of counts. For each cell, the number of (x, y) inside.

The list can be passed to image() directly for potting.

Note

Only points inside the region defined by xlim x ylim (inclusive) will be counted. For each cell, the
lower boundaries are closed and upper boundaries are open. A small number will be added to the
upper limits in xlim and ylim so that no points will be on the region’s upper boundaries.

hoa.1d (private) One-dimensional HOA test for a regression coefficient in an
NB GLM model

Description

(private) One-dimensional HOA test for a regression coefficient in an NB GLM model

Usage

hoa.1d(y, s, x, phi, beta0, tol.mu = 0.001/length(y),
alternative = "two.sided", print.level = 1)

Arguments

y an n vector of counts

s an n vector of effective library sizes

x an n by p design matrix

phi an n vector of dispersion parameters

beta0 a p vector specifying null hypothesis: non NA components are hypothesized
values of beta, NA components are free components

tol.mu convergence criteria

alternative "less" means phi < 0.

print.level a number, print level

Value

test statistics and p-values of HOA, LR, and Wald tests
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hoa.hd (private) HOA test for regression coefficients in an NBP GLM model

Description

(private) HOA test for regression coefficients in an NBP GLM model

Usage

hoa.hd(y, s, x, phi, beta0, tol.mu = 0.001/length(y), print.level = 1)

Arguments

y an n vector of counts

s an n vector of effective library sizes

x an n by p design matrix

phi an n vector of dispersion parameters

beta0 a p vector specifying null hypothesis: non NA components are hypothesized
values of beta, NA components are free components

tol.mu convergence criteria

print.level a number, print level

Value

test statistics and p-values of HOA, LR, and Wald tests

irls.nb (private) Estiamte the regression coefficients in an NB GLM model

Description

Estimate the regression coefficients in an NBP GLM model for each gene

Usage

irls.nb(y, s, x, phi, beta0 = rep(NA, ncol(x)), mustart = NULL, ...,
print.level = 0)
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Arguments

y an m*n matrix of counts

s an n vector of effective library sizes

x an n*p design matrix

phi a scalar or an m*n matrix of NB2 dispersion coefficients

beta0 a K vector, non NA components are hypothesized values of beta, NA compo-
nents are free components

mustart an m*n matrix of starting values of the means

... other parameters

print.level a number, print level

Value

beta a K vector, the MLE of the regression coefficients.

irls.nb.1 Estimate the regression coefficients in an NB GLM model

Description

Estimate the regression coefficients in an NB GLM model with known dispersion parameters

Usage

irls.nb.1(y, s, x, phi, beta0 = rep(NA, p), mustart = NULL, maxit = 50,
tol.mu = 0.001/length(y), print.level = 0)

Arguments

y an n vector of counts

s a scalar or an n vector of effective library sizes

x an n by p design matrix

phi a scalar or an n-vector of dispersion parameters

beta0 a vector specifying known and unknown components of the regression coeffi-
cients: non-NA components are hypothesized values of beta, NA components
are free components

mustart starting values for the vector of means

maxit maximum number of iterations

tol.mu a number, convergence criteria

tol a number, will be passed to Cdqrls

print.level a number, print level
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Details

This function estimates the regression coefficients using iterative reweighted least squares (IRLS)
algorithm, which is equivalent to Fisher scoring. The implementation is based on glm.fit.

Users can choose to fix some regression coefficients by specifying beta0. (This is useful when
fitting a model under a null hypothesis.)

Value

a list of the following components:

beta a p-vector of estimated regression coefficients

mu an n-vector of estimated mean values

conv logical. Was the IRLS algorithm judged to have converged?

zero logical. Was any of the fitted mean close to 0?

l.nb (private) The Log Likelihood of a NB Model

Description

The log likelihood of the NB model under the mean shape parameterization

Usage

l.nb(kappa, mu, y)

Arguments

kappa shape/size parameter

mu mean parameter

y a n-vector of NB counts

Details

This function call dnbinom to compute the log likelihood from each data point and sum the results
over all data points. kappa, mu and y should have compatible dimensions.

Value

the log likelihood of the NB model parameterized by (kappa, mu)
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log.phi.nb2 (private) A NBP dispersion model

Description

Specify a NB2 dispersion model. The parameter of the specified model are to be estimated from
the data using the function optim.pcl.

Usage

## S3 method for class 'phi.nb2'
log(par, pi)

Arguments

par a number, log dispersion

Details

Under this NB2 model, the log dispersion is a constant.

Value

a vector of length m, log dipserison.

log.phi.nbp (private) A NBP dispersion model

Description

Specify a NBP dispersion model. The parameters of the specified model are to be estimated from
the data using the function optim.pcl.

Usage

## S3 method for class 'phi.nbp'
log(par, pi, pi.offset = 1e-04)

Arguments

par a vector of length 2, the intercept and the slope of the log linear model (see
Details).

pi a vector of length m, estimated mean relative frequencies

pi.offset a number
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Details

Under this NBP model, the log dispersion is modeled as a linear function of the log mean realtive
frequencies (pi.pre):

log(phi) = par[1] + par[2] * log(pi.pre/pi.offset),

where the default value of pi.offset is 1e-4.

Value

a vector of length m, log dipserison.

log.phi.nbq (private) A NBQ dispersion model

Description

Specify a NBQ dispersion model. The parameters of the specified model are to be estimated from
the data using the function optim.pcl.

Usage

## S3 method for class 'phi.nbq'
log(par, pi, pi.offset = 1e-04)

Arguments

par a vector of length 3, see Details.

pi a vector of length m, estimated mean relative frequencies

pi.offset a number

Details

Under this NBQ model, the log dispersion is modeled as a quadratic function of the log mean
realtive frequencies (pi):

log(phi) = par[1] + par[2] * log(pi/pi.offset) + par[3] * (log(pi/pi.offset))^2;

where the (default) value of pi.offset is 1e-4.

Value

a vector of length m, log dipserison.
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ma.plot (private) MA plot with differently expressed genes highlighted

Description

Plot log (base 2) fold change vs average expression in RPM (two-group pooled) (i.e., an MA plot)
and highlight differentially expressed genes on the plot.

Usage

ma.plot(test.out, top = NULL, q.cutoff = NULL, p.cutoff = NULL,
col.sig = "magenta", main = "MA Plot", ...)

Arguments

test.out output from nbp.test

top a number indicating the number of genes to be declared as differentially ex-
pressed

q.cutoff a number, q-value cutoff

p.cutoff a number, p-value cutoff

col.sig color

main label

... additional parameters to be passed to smart.plot

Details

Differentially expressed genes are those with smallest DE test p-values. The user has three options
to specify the set of DE genes: the user can specify 1) the number of top genes to be declared as
significant; 2) a q-value cutoff; or 3) a p-value cutoff.

The plot is based on the thinned counts. The units on the x-axis is RPM (reads per million mapped
reads). We use RPM so that the results are more comparable between experiments with different
sequencing depth (and thus different column totals in the count matrix). We exclude rows (genes)
with 0 total counts after thinning.

Value

a vector, indices of top genes.
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make.disp (private) Specify a dispersion model

Description

Specify a dispersion model. The parameters of the specified model are to be estimated from the
data using the function optim.disp.apl or optim.disp.pl.

Usage

make.disp(nb.data, x, model, predictor, subset = filter.mu.pre(nb.data, x),
...)

Arguments

nb NB data, output from prepare.nb.data

x a matrix, design matrix (specifying the treatment structure).

model a string giving the name of the disperion model, can be one of "NB2", "NBP",
"NBQ", "NBS" or "step" (not case sensitive).

predictor a string giving the name of the predictor to use in the dispersion model, can
be one of "pi" and "mu", or "rs". "pi", preliminarily estimated mean relative
frequencies; "mu", preliminarily estimated mean frequencies; "rs", row sums.

subset a list of logical,

... additional parameter to disp.fun.*

Details

This functions calls disp.fun.<model> to specify a dispersion model (a list), using output from a
call to disp.predictor.<predictor> as argument list, where <model> is model from the input in
lower case (one of "nb2", "nbp", "nbq", "nbs" or "step") and <predictor> is predictor from the
input (one of "pi", "mu", or "rs")

Value

a list, output from the call to the funtion disp.fun.<model>.
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mv.line (private) Overlay an estimated mean-variance line

Description

Overlay an estimated mean-variance line on an existing mean-variance plot

Usage

mv.line(mu, v, ...)

Arguments

mu a vector of mean values

v a vector of variance values

... other

Details

Users should call mv.plot before calling this function.

If the length of theinput vectors (mu, v) is greater than 1000, then we will only use a subset of the
input vectors.

mv.line.fitted (private) Overlay an estimated mean-variance line

Description

Overlay an estimated mean-variance line on existing plot

Usage

mv.line.fitted(obj, ...)

Arguments

obj a list with components mu, a vector of mean values, and v, a vector of variance
values.

... other parameters

Details

This functions is a wrapper of mv.line. It takes a list (rather than two vectors) as input.
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Note

Users should call mv.plot before calling this function.

See Also

mv.line

mv.line.nbp (private) Overlay a NBP mean-variance line on an existing plot

Description

Overlay an estimated mean-variance line on existing plot

Usage

mv.line.nbp(nbp.obj, grp.id, ...)

Arguments

nbp.obj output from nbp.test or prepare.nbp

grp.id a number, indicates the group of counts to be used (grp.id is passed to get.mean.hat

... other parameters

Details

This function extracts the estimated means and variances from an nbp object and then call mv.line
to draw the mean-variance line on an existing plot

Note

Users should call mv.plot before calling this function.

See Also

prepare.nbp, nbp.test, mv.line



mv.plot 35

mv.plot (private) Mean-variance plot

Description

Mean-variance plot.

Usage

mv.plot(counts, xlab = "mean", ylab = "variance",
main = "variance vs mean", log = "xy", ...)

Arguments

counts a matrix of NB counts

xlab x label

ylab y label

main main, same as in plot

log same as in plot

... same as in plot

Details

Rows with mean 0 or variance 0 will not be plotted.

mv.points (private) Highlight a subset of points on the mean-variance plot

Description

Highlight a subset of points on the mean-variance plot

Usage

mv.points(counts, subset, ...)

Arguments

counts a matrix of NB counts

subset a numberic or logical vector indicating the subset

... other
of rows to be highlighted
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nb.glm.test Fit Negative Binomial Regression Model and Test for a Regression
Coefficient

Description

For each row of the input data matrix, nb.glm.test fits an NB log-linear regression model and
performs large-sample tests for a one-dimensional regression coefficient.

Usage

nb.glm.test(counts, x, beta0, lib.sizes = colSums(counts),
normalization.method = "AH2010", dispersion.model = "NBQ",
tests = c("HOA", "LR", "Wald"), alternative = "two.sided",
subset = 1:dim(counts)[1])

Arguments

counts an m by n matrix of RNA-Seq read counts with rows corresponding to gene
features and columns corresponding to independent biological samples.

x an n by p design matrix specifying the treatment structure.

beta0 a p-vector specifying the null hypothesis. Non-NA components specify the pa-
rameters to test and their null values.

lib.sizes a p-vector of observed library sizes, usually (and by default) estimated by col-
umn totals.

normalization.method

a character string specifying the method for estimating the normalization fac-
tors, can be NULL or "AH2010". If method=NULL, the normalization factors will
have values of 1 (i.e., no normalization is applied); if method="AH2010", the
normalization method proposed by Anders and Huber (2010) will be used.

dispersion.model

a character string specifying the dispersion model, and can be one of "NB2",
"NBP", "NBQ" (default), "NBS" or "step".

tests a character string vector specifying the tests to be performed, can be any subset
of "HOA" (higher-order asymptotic test), "LR" (likelihood ratio test), and "Wald"
(Wald test).

alternative a character string specifying the alternative hypothesis, must be one of "two.sided"
(default), "greater" or "less".

subset specify a subset of rows to perform the test on

Details

nbp.glm.test provides a simple, one-stop interface to performing a series of core tasks in regres-
sion analysis of RNA-Seq data: it calls estimate.norm.factors to estimate normalization factors;



nb.glm.test 37

it calls prepare.nb.data to create an NB data structure; it calls estimate.dispersion to estimate
the NB dispersion; and it calls test.coefficient to test the regression coefficient.

To keep the interface simple, nbp.glm.test provides limited options for fine tuning models/parameters
in each individual step. For more control over individual steps, advanced users can call estimate.norm.factors,
prepare.nb.data, estimate.dispersion, and test.coefficient directly, or even substitute
one or more of them with their own versions.

Value

A list containing the following components:

data a list containing the input data matrix with additional summary quantities, output
from prepare.nb.data.

dispersion dispersion estimates and models, output from estimate.dispersion.

test test results, output from test.coefficient.

Examples

## Load Arabidopsis data
data(arab);

## Specify treatment structure
grp.ids = as.factor(c(1, 1, 1, 2, 2, 2));
x = model.matrix(~grp.ids);

## Specify the null hypothesis
## The null hypothesis is beta[1]=0 (beta[1] is the log fold change).
beta0 = c(NA, 0);

## Fit NB regression model and perform large sample tests.
## The step can take long if the number of genes is large
fit = nb.glm.test(arab, x, beta0, subset=1:50);

## The result contains the data, the dispersion estimates and the test results
print(str(fit));

## Show HOA test results for top ten genes
subset = order(fit$test.results$HOA$p.values)[1:10];
cbind(fit$data$counts[subset,], fit$test.results$HOA[subset,]);

## Show LR test results
subset = order(fit$test.results$LR$p.values)[1:10];
cbind(fit$data$counts[subset,], fit$test.results$LR[subset,]);
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nbp.test NBP Test for Differential Gene Expression from RNA-Seq Counts

Description

nbp.test fits an NBP model to the RNA-Seq counts and performs Robinson and Smyth’s exact NB
test on each gene to assess differential gene expression between two groups.

Usage

nbp.test(counts, grp.ids, grp1, grp2, norm.factors = rep(1, dim(counts)[2]),
model.disp = "NBQ", lib.sizes = colSums(counts), print.level = 1, ...)

Arguments

counts an n by r matrix of RNA-Seq read counts with rows corresponding to genes
(exons, gene isoforms, etc) and columns corresponding to libraries (independent
biological samples).

grp.ids an r vector of treatment group identifiers (e.g. integers).
grp1 group 1 id
grp2 group 2 id
norm.factors an r vector of normalization factors.
model.disp a string, one of "NB2", "NBP" or "NBQ" (default).
lib.sizes (unnormalized) library sizes
print.level a number, controls the amount of messages printed: 0 for suppressing all mes-

sages, 1 (default) for basic progress messages, and 2 to 5 for increasingly more
detailed messages.

... optional parameters to be passed to estimate.disp, the function that estimates
the dispersion parameters.

Details

nbp.test calls prepare.nbp to create the NBP data structure, perform optional normalization
and adjust library sizes, calls estimate.disp to estimate the NBP dispersion parameters and
exact.nb.test to perform the exact NB test for differential gene expression on each gene. The
results are summarized using p-values and q-values (FDR).

Overview: For assessing evidence for differential gene expression from RNA-Seq read counts,
it is critical to adequately model the count variability between independent biological replicates.
Negative binomial (NB) distribution offers a more realistic model for RNA-Seq count variabil-
ity than Poisson distribution and still permits an exact (non-asymptotic) test for comparing two
groups.
For each individual gene, an NB distribution uses a dispersion parameter ϕi to model the extra-
Poisson variation between biological replicates. Across all genes, parameter ϕi tends to vary with
the mean µi. We capture the dispersion-mean dependence using a parametric model: NB2, NBP
and NBQ. (See estimate.disp for more details.)
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Count Normalization: We take gene expression to be indicated by relative frequency of RNA-
Seq reads mapped to a gene, relative to library sizes (column sums of the count matrix). Since the
relative frequencies sum to 1 in each library (one column of the count matrix), the increased rela-
tive frequencies of truly over expressed genes in each column must be accompanied by decreased
relative frequencies of other genes, even when those others do not truly differentially express.
Robinson and Oshlack (2010) presented examples where this problem is noticeable.
A simple fix is to compute the relative frequencies relative to effective library sizes—library sizes
multiplied by normalization factors. By default, nbp.test assumes the normalization factors are
1 (i.e. no normalization is needed). Users can specify normalization factors through the argu-
ment norm.factors. Many authors (Robinson and Oshlack (2010), Anders and Huber (2010))
propose to estimate the normalization factors based on the assumption that most genes are NOT
differentially expressed.

Library Size Adjustment: The exact test requires that the effective library sizes (column sums
of the count matrix multiplied by normalization factors) are approximately equal. By default,
nbp.test will thin (downsample) the counts to make the effective library sizes equal. Thinning
may lose statistical efficiency, but is unlikely to introduce bias.

Value

a list with the following components:

counts an n by r matrix of counts, same as input.

lib.sizes an r vector, column sums of the count matrix.

grp.ids an r vector, identifiers of treatment groups, same as input.

grp1, grp2 identifiers of the two groups to be compared, same as input.

eff.lib.sizes an r vector, effective library sizes, lib.sizes multiplied by the normalization fac-
tors.

pseudo.counts count matrix after thinning, same dimension as counts
pseduo.lib.sizes

an r vector, effective library sizes of pseudo counts, i.e., column sums of the
pseudo count matrix multiplied by the normalization.

phi, alpha two numbers, parameters of the dispersion model.

pie a matrix, same dimension as counts, estimated mean relative frequencies of
RNA-Seq reads mapped to each gene.

pooled.pie a matrix, same dimenions as counts, estimated pooled mean of relative frequen-
cies in the two groups being compared.

expression.levels

a n by 3 matrix, estimated gene expression levels as indicated by mean rela-
tive frequencies of RNA-Seq reads. It has three columns grp1, grp2, pooled
corresponding to the two treatment groups and the pooled mean.

log.fc an n-vector, base 2 log fold change in mean relative frequency between two
groups.

p.values an n-vector, p-values of the exact NB test applied to each gene (row).

q.values an n-vector, q-values (estimated FDR) corresponding to the p-values.
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Note

Due to thinning (random downsampling of counts), two identical calls to nbp.test may yield
slightly different results. A random number seed can be used to make the results reproducible. The
regression analysis method implemented in nb.glm.test does not require thinning and can also be
used to compare expression in two groups.

Advanced users can call estimate.norm.factors, prepare.nbp, estimate.disp, exact.nb.test
directly to have more control over modeling and testing.

References

Di, Y, D. W. Schafer, J. S. Cumbie, and J. H. Chang (2011): "The NBP Negative Binomial Model
for Assessing Differential Gene Expression from RNA-Seq", Statistical Applications in Genetics
and Molecular Biology, 10 (1).

Robinson, M. D. and G. K. Smyth (2007): "Moderated statistical tests for assessing differences in
tag abundance," Bioinformatics, 23, 2881-2887.

Robinson, M. D. and G. K. Smyth (2008): "Small-sample estimation of negative binomial disper-
sion, with applications to SAGE data," Biostatistics, 9, 321-332.

Anders, S. and W. Huber (2010): "Differential expression analysis for sequence count data," Genome
Biol., 11, R106.

Robinson, M. D. and A. Oshlack (2010): "A scaling normalization method for differential expres-
sion analysis of RNA-seq data," Genome Biol., 11, R25.

See Also

prepare.nbp, estimate.disp, exact.nb.test.

Examples

## Load Arabidopsis data
data(arab);

## Specify treatment groups and ids of the two groups to be compared
grp.ids = c(1, 1, 1, 2, 2, 2);
grp1 = 1;
grp2 = 2;

## Estimate normalization factors
norm.factors = estimate.norm.factors(arab);

## Set a random number seed to make results reproducible
set.seed(999);

## Fit the NBP model and perform exact NB test for differential gene expression.
## For demonstration purpose, we will use the first 100 rows of the arab data.
res = nbp.test(arab[1:100,], grp.ids, grp1, grp2,

lib.sizes = colSums(arab), norm.factors = norm.factors, print.level=3);

## The argument lib.sizes is needed since we only use a subset of
## rows. If all rows are used, the following will be adequate:
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##
## res = nbp.test(arab, grp.ids, grp1, grp2, norm.factors = norm.factors);

## Show top ten most differentially expressed genes
subset = order(res$p.values)[1:10];
print(res, subset);

## Count the number of differentially expressed genes (e.g. qvalue < 0.05)
alpha = 0.05;
sig.res = res$q.values < alpha;
table(sig.res);

## Show boxplots, MA-plot, mean-variance plot and mean-dispersion plot
par(mfrow=c(3,2));
plot(res);

nll.log.phi.fun Negative profile conditional likelihood of the dispersion model

Description

Negative profile conditional likelihood of the dispersion model

Usage

nll.log.phi.fun(par, log.phi.fun, y, ls, n.grps, grps, grp.sizes, mu.lower,
mu.upper, print.level)

Arguments

par parameter of the disperesion model

log.phi.fun the disperison model

y counts

ls library sizes

n.grps number of groups

grps a boolean matrix of group membership

grp.sizes group sizes

mu.lower lower bound for mu

mu.upper upper bound for mu

print.level print level

Value

negative log likelihood of the dispersion function
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optim.disp.apl (private) Estimate the parameters in a dispersion model

Description

Estimate the parameters in a dispersion model.

Usage

optim.disp.apl(disp, counts, eff.lib.sizes, x, method = "L-BFGS-B",
mustart = NULL, fast = FALSE, print.level = 1, ...)

Arguments

disp a list, output from disp.nbp, disp.nbq.

counts a matrix, the nb counts

eff.lib.sizes effective library sizes

x a desing matrix

method the optimization method to be used by optim

print.level print level

mustart a matrix of the same dimension as counts, starting values of mu

fast logical, if TRUE will use a faster (but less accurate) method

... additional parareters, will be passed to optim().

Details

The function will call the R funciton optim to mimimize the negative log adjusted profile likelihood
of the dipserison model.

Value

a list with components:

optim.disp.pl (private) Estimate the parameters in a dispersion model

Description

Estimate the parameters in a dispersion model.

Usage

optim.disp.pl(disp, counts, eff.lib.sizes, x, method = "L-BFGS-B",
mustart = NULL, fast = FALSE, ...)
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Arguments

disp a list, output from disp.nbp, disp.nbq, disp.nbs, and so on.

counts a matrix, the nb counts

eff.lib.sizes effective library sizes

x a desing matrix

method the optimization method to be used by optim

mustart a matrix of the same dimension as counts, starting values of mu

fast logical, if TRUE will use a faster (but less accurate) method

... additional parareters, will be passed to optim().

Details

The function will call the R funciton optim to mimimize the negative log likelihood of the dipseri-
son model.

Value

a list with components:

phi.line (private) Overlay an mean-dispersion line on an esimtated plot

Description

Users should call vmr.plot before calling this function.

Usage

phi.line(mu, v, alpha = 2, ...)

Arguments

mu a vector of mean values

v a vector of variance values

alpha alpha

... other

Details

If the length of theinput vectors (mu, v) is greater than 1000, then we will only use a subset of the
input vectors.

The dispersion is computed from the mean mu and the variance v, using ϕ = (v−µ)/µalpha, where
alpha=2 by default.
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Note

Currently, we discards genes giving 0 mean or negative dispersion estimate (which can happen if
sample variance is smaller than the sample mean).

phi.line.fitted (private) Overlay an estimated mean-dispersion line on an existing
plot

Description

Overlay an estimated mean-dispersion line on an existing plot

Usage

phi.line.fitted(obj, alpha = 2, ...)

Arguments

obj a list with two components: mu, a vector of mean values; v, a vector of variance
values.

alpha alpha

... other

Details

This function is a wrapper of phi.line. It takes a list (rather than two separate vectors) as input.

Note

Users should call phi.plot before calling this function.

See Also

phi.line
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phi.line.nbp (private) Overlay an estimated mean-dispersion line on an existing
plot

Description

Overlay an estimated mean-dispersion line on an existing plot

Usage

phi.line.nbp(nbp.obj, grp.id, alpha = 2, ...)

Arguments

nbp.obj output from nbp.test or prepare.nbp

grp.id a number, indicates the group of counts to be used (grp.id is passed to get.mean.hat)

alpha alpha

... other

Details

This function extracts the estimated means and variances from an nbp object and then call phi.line
to draw the mean-dispersion curve

Note

Users should call phi.plot before calling this function.

See Also

prepare.nbp, nbp.test, phi.line

phi.plot Plot estimated genewise NB2 dispersion parameter versus estimated
mean

Description

Plot estimated NB2 dispersion parameter versus estimated mean

Usage

phi.plot(counts, alpha = 2, xlab = "mean", ylab = "phi.hat",
main = "phi.hat vs mean", log = "xy", ...)
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Arguments

counts a matrix of NB counts

alpha alpha

xlab x label

ylab y label

main main

log log

... other

Details

phi.plot estimate the NB2 dispersion parameter for each gene separately by ϕ = (v−µ)/µalpha,
where µ and v are sample mean and sample variance. By default, alpha = 2.

Note

Currently, we discards genes giving 0 mean or negative dispersion estimate (which can happen if
sample variance is smaller than the sample mean).

plot.nb.data Boxplot and scatterplot matrix of relative frequencies (after normal-
ization)

Description

Boxplot and scatterplot matrix of relative frequencies (after normalization)

Usage

## S3 method for class 'nb.data'
plot(x, resolution = 50, hlim = 0.25, clip = 128,
eps = 0.01, ...)

Arguments

x output from prepare.nb.data

resolution

hlim a single number controls the height of the bars in the

clip

eps a small positive number added to rpm

... currently not used histograms
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plot.nb.dispersion Plot the estimated dispersion as a function of the preliminarily esti-
mated mean relative frequencies

Description

Plot the estimated dispersion as a function of the preliminarily estimated mean relative frequencies

Usage

## S3 method for class 'nb.dispersion'
plot(x, ...)

Arguments

x output from estimate.dispersion

... additional parameters, currently unused

plot.nbp Diagnostic Plots for an NBP Object

Description

For output from nbp.test, produce a boxplot, an MA plot, mean-variance plots (one for each
group being compared), and mean-dispersion plots (one for each group being compared). On the
mean-variance and the mean-dispersion plots, overlay curves corresponding to the estimated NBP
model.

Usage

## S3 method for class 'nbp'
plot(x, ...)

Arguments

x output from nbp.test.

... for future use

See Also

nbp.test

Examples

## See the example for nbp.test
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prepare.nb.data Prepare the NB Data Structure for RNA-Seq Read Counts

Description

Create a data structure to hold the RNA-Seq read counts and other relevant information.

Usage

prepare.nb.data(counts, lib.sizes = colSums(counts),
norm.factors = estimate.norm.factors(counts), tags = NULL)

Arguments

counts an mxn matrix of RNA-Seq read counts with rows corresponding to gene fea-
tures and columns corresponding to independent biological samples.

lib.sizes an n-vector of observed library sizes. By default, library sizes are estimated to
the column totals of the matrix counts.

norm.factors an n-vector of normalization factors. By default, have values 1 (no normalization
is applied).

tags a matrix of tags associated with genes, one row for each gene (having the same
number of rows as counts.

Value

A list containing the following components:

counts the count matrix, same as input.

lib.sizes observed library sizes, same as input.

norm.factors normalization factors, same as input.

eff.lib.sizes effective library sizes (lib.sizes x norm.factors).

rel.frequencies

relative frequencies (counts divided by the effective library sizes).

tags a matrix of gene tags, same as input.
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prepare.nbp Prepare the Data Structure for Exact NB test for Two-Group Compar-
ison

Description

Create the NBP data structure, (optionally) normalize the counts, and thin the counts to make the
effective library sizes equal.

Usage

prepare.nbp(counts, grp.ids, lib.sizes = colSums(counts),
norm.factors = NULL, thinning = TRUE, print.level = 1)

Arguments

counts an n by r matrix of RNA-Seq read counts with rows corresponding to genes
(exons, gene isoforms, etc) and columns corresponding to libraries (independent
biological samples).

grp.ids an r vector of treatment group identifiers (can be a vector of integers, chars or
strings).

lib.sizes library sizes, an r vector of numbers. By default, library sizes are estimated by
column sums.

norm.factors normalization factors, an r vector of numbers. If NULL (default), no normaliza-
tion will be applied.

thinning a boolean variable (i.e., logical). If TRUE (default), the counts will be randomly
down sampled to make effective library sizes approximately equal.

print.level a number, controls the amount of messages printed: 0 for suppressing all mes-
sages, 1 (default) for basic progress messages, and 2 to 5 for increasingly more
detailed messages.

Details

Normalization

We take gene expression to be indicated by relative frequency of RNA-Seq reads mapped to a gene,
relative to library sizes (column sums of the count matrix). Since the relative frequencies sum
to 1 in each library (one column of the count matrix), the increased relative frequencies of truly
over expressed genes in each column must be accompanied by decreased relative frequencies of
other genes, even when those others do not truly differently express. Robinson and Oshlack (2010)
presented examples where this problem is noticeable.

A simple fix is to compute the relative frequencies relative to effective library sizes—library sizes
multiplied by normalization factors. Many authors (Robinson and Oshlack (2010), Anders and
Huber (2010)) propose to estimate the normalization factors based on the assumption that most
genes are NOT differentially expressed.



50 print.nb.data

By default, prepare.nbp does not estimate the normalization factors, but can incorporate user
specified normalization factors through the argument norm.factors.

Library Size Adjustment

The exact test requires that the effective library sizes (column sums of the count matrix multiplied by
normalization factors) are approximately equal. By default, prepare.nbp will thin (downsample)
the counts to make the effective library sizes equal. Thinning may lose statistical efficiency, but is
unlikely to introduce bias.

Value

A list containing the following components:

counts the count matrix, same as input.

lib.sizes column sums of the count matrix.

grp.ids a vector of identifiers of treatment groups, same as input.

eff.lib.sizes effective library sizes, lib.sizes multiplied by the normalization factors.

pseudo.counts count matrix after thinning.
pseduo.lib.sizes

effective library sizes of pseudo counts, i.e., column sums of the pseudo count
matrix multiplied by the normalization.

Note

Due to thinning (random downsampling of counts), two identical calls to prepare.nbp may yield
slightly different results. A random number seed can be used to make the results reproducible.

See Also

nbp.test

Examples

## See the example for exact.nb.test

print.nb.data Print summary of the nb counts

Description

Print summary of the nb counts

Usage

## S3 method for class 'nb.data'
print(x, ...)
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Arguments

x output from prepare.nb.data

... additional parameters, currently not used

print.nb.dispersion Print the estimated dispersion model

Description

Print the estimated dispersion model

Usage

## S3 method for class 'nb.dispersion'
print(x, ...)

Arguments

x output from from estimate.dispersion

... additional parameters, currently unused

print.nb.test Print output from test.coefficient

Description

We simply print out the structure of x. (Currenlty the method is equivalent to print(str(x)).)

Usage

## S3 method for class 'nb.test'
print(x, ...)

Arguments

x output from test.coefficient

... currenty not used
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print.nbp Print summary of an NBP Object

Description

Print contents of an NBP object, output from prepare.nbp, estimate.disp, or nbp.test.

Usage

## S3 method for class 'nbp'
print(x, subset = 1:10, ...)

Arguments

x Output from prepare.nbp, estimate.disp, or nbp.test.

subset indices of rows of the count matrix to be printed.

... other parameters (for future use).

See Also

nbp.test.

Examples

## See the example for nbp.test

smart.plot.new (private) An alternative to plot.default() for plotting a large number of
densely distributed points.

Description

An alternative to plot.default() for plotting a large number of densely distributed points. This func-
tion can produce a visually almost identical plot using only a subset of the points. This is particular
useful for reducing output file size when plots are written to eps files.

Usage

smart.plot.new(x, y = NULL, xlim = NULL, ylim = NULL, xlab = NULL,
ylab = NULL, log = "", resolution = 50, col = gray((224:0)/256),
clip = NULL, col.clipped = rgb(log2(1:256)/log2(256), 0, 0), ...)
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Arguments

x x

y y

xlim xlim

ylim ylim

xlab x label

ylab y label

log log

resolution a number, determines the distance below which points will be considered as
overlapping.

plot logical, whether

col color

clip clip

color.clipped color of clipped points

... other arguments are the same as in plot.default().

Details

Writing plots with a large number of points to eps files can result in big files and lead to very slow
rendering time.

Usually for a large number of points, a lot of them will overlap with each other. Plotting only
a subset of selected non-overlapping points can give visually almost identical plots. Further more,
the plots can be enhanced if using gray levels (the default setting) that are proportional to the number
points overlapping with each plotted point.

This function scans the points sequentially. For each unmarked point that will be plotted, all points
that overlap with it will be marked and not to plotted, and the number of overlapping points will be
recorded. This is essentially producing a 2d histogram. The freqs of the points will be converted to
gray levels, darker colors correspond to higher freqs.

Value

(if plot=FALSE) a list

x, y the x, y-coordinates of the subset of representative points

id the indicies of these points in the original data set

freqs the numbers of points that overlap with each representative point

col colors determined by the freqs
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smart.plot.old (private) An alternative to plot.default() for plotting a large number of
densely distributed points.

Description

An alternative to plot.default() for plotting a large number of densely distributed points. This func-
tion can produce a visually almost identical plot using only a subset of the points. This is particular
useful for reducing output file size when plots are written to eps files.

Usage

smart.plot.old(x, y = NULL, xlim = NULL, ylim = NULL, xlab = NULL,
ylab = NULL, log = "", resolution = 100, plot = TRUE, col = NULL,
clip = Inf, color.clipped = TRUE, ...)

Arguments

x x
y y
xlim xlim
ylim ylim
xlab x label
ylab y label
log log
resolution a number, determines the distance below which points will be considered as

overlapping.
plot logical, whether
col color
clip clip
color.clipped color of clipped points
... other arguments are the same as in plot.default().

Details

Writing plots with a large number of points to eps files can result in big files and lead to very slow
rendering time.

Usually for a large number of points, a lot of them will overlap with each other. Plotting only
a subset of selected non-overlapping points can give visually almost identical plots. Further more,
the plots can be enhanced if using gray levels (the default setting) that are proportional to the number
points overlapping with each plotted point.

This function scans the points sequentially. For each unmarked point that will be plotted, all points
that overlap with it will be marked and not to plotted, and the number of overlapping points will be
recorded. This is essentially producing a 2d histogram. The freqs of the points will be converted to
gray levels, darker colors correspond to higher freqs.
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Value

(if plot=FALSE) a list

x, y the x, y-coordinates of the subset of representative points

id the indicies of these points in the original data set

freqs the numbers of points that overlap with each representative point

col colors determined by the freqs

smart.points (private) An alternative to point.default() for plotting a large number
of densely distributed points.

Description

See description of smart.plot for more details.

Usage

smart.points(x, y = NULL, resolution = 50, col = NULL, clip = Inf,
color.clipped = TRUE, ...)

Arguments

x x

y y

resolution a number, determines the distance below which points will be considered as
overlapping.

col color

clip clip

color.clipped color of clipped points

... other arguments are the same as in plot.default().
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test.coefficient Large-sample Test for a Regression Coefficient in an Negative Bino-
mial Regression Model

Description

test.coefficient performs large-sample tests (higher-order asymptotic test, likelihood ratio test,
and/or Wald test) for testing regression coefficients in an NB regression model.

Usage

test.coefficient(nb, dispersion, x, beta0, tests = c("HOA", "LR", "Wald"),
alternative = "two.sided", subset = 1:m, print.level = 1)

Arguments

nb an NB data object, output from prepare.nb.data.

dispersion dispersion estimates, output from estimate.disp.

x an n by p design matrix describing the treatment structure

beta0 a p-vector specifying the null hypothesis. Non-NA components specify the pa-
rameters to test and their null values. (Currently, only one-dimensional test is
implemented, so only one non-NA component is allowed).

tests a character string vector specifying the tests to be performed, can be any subset
of "HOA" (higher-order asymptotic test), "LR" (likelihood ratio test), and "Wald"
(Wald test).

alternative a character string specifying the alternative hypothesis, must be one of "two.sided"
(default), "greater" or "less".

subset an index vector specifying on which rows should the tests be performed

print.level a number controlling the amount of messages printed: 0 for suppressing all
messages, 1 (default) for basic progress messages, and 2 to 5 for increasingly
more detailed message.

Details

test.coefficient performs large-sample tests for a one-dimensional (q = 1) component ψ of the
p-dimensional regression coefficient β. The hypothesized value ψ0 of ψ is specified by the non-NA
component of the vector beta0 in the input.

The likelihood ratio statistic,
λ = 2(l(β̂)− l(β̃)),

converges in distribution to a chi-square distribution with 1 degree of freedom. The signed square
root of the likelihood ratio statistic λ, also called the directed deviance,

r = sign(ψ̂ − ψ0)
√
λ

converges to a standard normal distribution.
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For testing a one-dimensional parameter of interest, Barndorff-Nielsen (1986, 1991) showed that a
modified directed

r∗ = r − 1

r
log(z)

is, in wide generality, asymptotically standard normally distributed to a higher order of accuracy
than the directed deviance r itself, where z is an adjustment term. Tests based on high-order asymp-
totic adjustment to the likelihood ratio statistic, such as r∗ or its approximation, are referred to as
higher-order asymptotic (HOA) tests. They generally have better accuracy than corresponding un-
adjusted likelihood ratio tests, especially in situations where the sample size is small and/or when
the number of nuisance parameters (p−q) is large. The implementation here is based on Skovgaard
(2001). See Di et al. 2013 for more details.

Value

a list containing the following components:

beta.hat an m by p matrix of regression coefficient under the full model

mu.hat an m by n matrix of fitted mean frequencies under the full model

beta.tilde an m by p matrix of regression coefficient under the null model

mu.tilde an m by n matrix of fitted mean frequencies under the null model.

HOA, LR, Wald each is a list of two m-vectors, p.values and q.values, giving p-values and
q-values of the corresponding tests when that test is included in tests.

References

Barndorff-Nielsen, O. (1986): "Infereni on full or partial parameters based on the standardized
signed log likelihood ratio," Biometrika, 73, 307-322

Barndorff-Nielsen, O. (1991): "Modified signed log likelihood ratio," Biometrika, 78, 557-563.

Skovgaard, I. (2001): "Likelihood asymptotics," Scandinavian Journal of Statistics, 28, 3-32.

Di Y, Schafer DW, Emerson SC, Chang JH (2013): "Higher order asymptotics for negative binomial
regression inferences from RNA-sequencing data". Stat Appl Genet Mol Biol, 12(1), 49-70.

Examples

## Load Arabidopsis data
data(arab);

## Estimate normalization factors (we want to use the entire data set)
norm.factors = estimate.norm.factors(arab);

## Prepare the data
## For demonstration purpose, only the first 50 rows are used
nb.data = prepare.nb.data(arab[1:50,], lib.sizes = colSums(arab), norm.factors = norm.factors);

## For real analysis, we will use the entire data set, and can omit lib.sizes parameter)
## nb.data = prepare.nb.data(arab, norm.factors = norm.factors);

print(nb.data);
plot(nb.data);
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## Specify the model matrix (experimental design)
grp.ids = as.factor(c(1, 1, 1, 2, 2, 2));
x = model.matrix(~grp.ids);

## Estimate dispersion model
dispersion = estimate.dispersion(nb.data, x);

print(dispersion);
plot(dispersion);

## Specify the null hypothesis
## The null hypothesis is beta[2]=0 (beta[2] is the log fold change).
beta0 = c(NA, 0);

## Test regression coefficient
res = test.coefficient(nb.data, dispersion, x, beta0);

## The result contains the data, the dispersion estimates and the test results
print(str(res));

## Show HOA test results for top ten most differentially expressed genes
top = order(res$HOA$p.values)[1:10];
print(cbind(nb.data$counts[top,], res$HOA[top,]));

## Plot log fold change versus the fitted mean of sample 1 (analagous to an MA-plot).
plot(res$mu.tilde[,1], res$beta.hat[,2]/log(2), log="x",

xlab="Fitted mean of sample 1 under the null",
ylab="Log (base 2) fold change");

## Highlight top DE genes
points(res$mu.tilde[top,1], res$beta.hat[top,2]/log(2), col="magenta");

thin.counts (private) Thin (downsample) counts to make the effective library sizes
equal.

Description

Thin (downsample) counts to make the effective library sizes equal.

Usage

thin.counts(y, current.lib.sizes = colSums(y),
target.lib.sizes = min(current.lib.sizes))
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Arguments

y an n by r matrix of counts
current.lib.sizes

an r vector indicating current estimated library sizes
target.lib.sizes

an r vector indicating target library sizes after thinning

Details

The exact NB test for differential gene expression requires that the effective library sizes (column
sums of the count matrix multiplied by normalization factors) are approximately equal. This func-
tion will thin (downsample) the counts to make the effective library sizes equal. Thinning may lose
statistical efficiency, but is unlikely to introduce bias. The reason to use thinning, not scaling, is
because Poisson counts after thinning are still Poisson, but Poisson counts after scaling will not be
Poisson.

Value

a list

counts a matrix of thinned counts (same dimension as the input y).

librar.sizes library sizes after thinning, same as the input target.lib.sizes

[.nb.data hello

Description

hello

Usage

## S3 method for class 'nb.data'
x[i, j, ..., drop = FALSE]

Arguments

x

i

j

...

drop
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